
DS5110 - Fall 2019 

ASSESSING SIMILARITIES AND DIFFERENCES BETWEEN 

NEWS ORGANISATIONS IN THE UNITED STATES 

 
Devanshi Deswal, Samar Dikshit, Connor Higgins, Kartheek Karnati, Oliver Spohngellert 

 

Summary 
 

News sources are meant to provide people with facts summarising an event of significance that has taken 

place. From these facts, we can form our own opinions related to the event, without being influenced by 

these organisations. However, over time, these sites have developed biases, especially when it comes to 

politics [1]. Due to this bias, the same event might be reported on in different manners depending on the 

political lean of a news site.  

 

In this project, we attempt to investigate the similarities and differences between new organisations 

reporting on political issues in the United States of America. By analysing attributes such as article 

headlines, vocabulary used, and the sentiment with which an event is covered, we believe that we can find 

a correlation between these factors and the political lean of the news site. This will also help in uncovering 

the differences between organisations on the same side of the political spectrum. Our final goal is to build 

classifiers that can predict the political lean of an article based on its text.  

 

To keep the objectives of this project relevant, we chose to analyse articles that report ongoing political 

issues, such as the 2020 Democratic Party Presidential Primaries, and the Trump - Ukraine Scandal. As 

there is no dataset available that fits our specific requirement, we scraped various news sites from all sides 

of the political spectrum to create a dataset. After filtering out certain articles, the final dataset contains 

attributes such as the article text, author, and date of publishing, along with metadata such as the last 

modified date and article tag.  

 

To achieve our goals, we performed a variety of analyses, including word association analysis, reading 

level analysis, and creating two classifiers. Using graphical visualisations, we could see clear differences 

in the way events were reported, both over time and by the political lean of the media organisation. Our 

classifiers were able to predict the lean of an article with over 70% accuracy   

 

 

 

 

 

 



Methods 

1. Data Collection 
To acquire our data we used a collection of web crawlers written in both R and Python. The final breakdown 

amongst the data collected was as follows: 

● R: Fox News (17,052 articles), Reuters (21,222 articles), Mother Jones (756 articles), BBC (3,377 

articles), FiveThirtyEight (523 articles) 

● Python: Breitbart (9,260 articles), Vox (7,958 articles) 

● Mix: CNN (13,070 articles) -- originally collected in R, bugfix later written in Python 

 

All web crawlers, both written in Python and R followed the same general process: 

 
That is, all of our web crawlers used pre-existing site archives for easy data collection. These “site archives” 

are essentially just old sitemaps that have been kept. Many sites, maintain sitemaps mainly so they can be 

indexed by search engine web crawlers [3]. For news sites, showing up in search engines is vital and so we 

could reliably count on most sites being exceptionally easy to scrape.  As an example, 

https://fivethirtyeight.com/sitemap-index-1.xml. 

 

Sitemaps might be meant for search engines, but they are very easy to use by crawlers we write as well. 

This meant simple, fast code could be used to assemble a very large dataset with minimal effort. This had 

the added advantage of being an extremely modular approach that was easy to parallelize. 

 

We laid out a few basic rules for data collection. First we only looked for articles running back since August 

2019. The primary reason for this was to ensure we could maintain a balanced dataset. Some sites, such as 

FiveThirtyEight were very well maintained and collection from the beginning of publication was very 

simple. Others, such as Reuters only kept articles from the last few months. To reconcile these differences, 

we picked a date range that let us account for them and avoid creating artificial imbalances (i.e. were Reuters 

would appear to “write less” than other sites past a certain date). 

 

In addition we wanted to limit the topic strictly to US politics, as classification of political bias (primarily 

in the US) was the main project goal. As much of the time the topic of an article was only available after 

collecting data from it, it became necessary to establish a rigorous filtering process to maintain data quality. 

 

2. Data Filtering 
 

While the web scrapers collected 72,218 articles from 8 different news sites, most of these articles were not 

related to US politics. This is because most news websites archive their articles based on the date that they 

were published on, and not by topic. For this reason, we created a pipeline to filter out irrelevant articles 

and keep what was required for our analysis.  

 

https://fivethirtyeight.com/sitemap-index-1.xml


The stages of the pipeline were: 

 

1. Use article metadata to get articles related to US politics: All the news sites we collected data from 

use an article tag to classify the topic of the article. For example, CNN uses the tag politics for 

articles related to US politics. However, not all news sites use the same tags, for example Mother 

Jones uses a variety of tags such as Politics, Impeachment, and Donald Trump. Hence we first had 

to identify tags pertinent to our topic to ensure that we get as many relevant articles as possible. 

2. Check if the article text is not NA: R uses NA to represent missing data. Some news sites publish 

podcast videos on their websites, which can result in the scraper collecting an article with relevant 

metadata but no article text. As we’re performing analysis on the text and using it as a feature for 

our classifiers, we need to remove any data collected where it text is missing, i.e. NA. 

3. Transform data by adding labels: To classify articles by political lean and source, we added the two 

attributes as labels for each observation. Using the media bias ratings of AllSides [1], we 

categorised the political lean of a certain source’s article as left, right, or centre. If AllSides 

classified a source as leaning left/right, we classified it as left/right. The second label we added was 

just the source of the article, for example fox for Fox News, to keep our news site labels consistent 

across the data.   

4. Apply date filter: To ensure that we’re analysing events that have either just taken place or are 

currently ongoing, all the articles in our final dataset were published on or after 1st August 2019. 

Articles published before this date were removed. 

 

All stages of the pipeline were implemented using functions provided in R’s dplyr package. The final 

dataset we obtained had 8,992 observations, with 13 attributes for each article.  

 

3. Data Analysis 

 

3.1 The Most Common Terms 

When looking at articles, one could argue that the text of the headline is more important than the text of the 

article itself, as everyone reads the headline, but not everyone reads the article. Further, headlines have a 

lot of data on what topics different news organizations are reporting on. In addition, we wanted to see how 

article headlines changed with time on both sides of the political spectrum. With these motivations in mind, 

we decided to analyze the top words used in article headlines in both right and left leaning news 

organizations. To do this, the article_headline column was split into its individual words using 

unnest_tokens(). Then, stop words were filtered out, and the remaining words were grouped by their 

political_lean and month, counted using count(), and filtered to the top 10 words using topn(). This was 

plotted using geom_col(), and faceted using facet_wrap() by month. This allowed us to see the most 

common words in headlines by both right and left wing news sources. 

 

3.2 Presidential Candidate Popularity Analysis 

From the data that we have, we were interested to see the coverage each person running for president in the 

next election was getting from each news site. In order to see if there was a disparity in coverage for the 

candidates, we plotted a bar graph for the 5 most covered people on each site running for President faceted 

by site and filled by lean. In order to get the intended output, the data in the article_text column of the 



dataset was split into individual words with the unnest_tokens() function from the tokenizers package in R 

grouped by news site and political lean using group_by() function from the dplyr package. The resulting 

data frame was called tidy_articles. Stop words were removed using anti_join() function. We also created 

a tibble called names of last names of candidates running for President in the next election. We performed 

a semi join on the data frame which had individual words of the article text with the aforementioned tibble 

and visualized the top 5 most covered people running for President using top_n(), ggplot(), and geom_col() 

functions. 

 

3.3 Bigram and Word Association Analysis 

In order to view how different new organisations use different terminology, we analysed the most common 

bigrams in article text for each political lean. To visualise this, we used the igraph and ggraph packages in 

R. In order to obtain bigrams from text data, we used the unnest_tokens() with token set to ngrams, and n 

equal to 2. After getting the bigrams, we split them into individual words (word1 and word2), and filtered 

out stopwords using separate() and anti_join() respectively. We also kept only the necessary columns in 

the dataset i.e. date, news site, political lean, word1 and word2.  

 

On the resultant data frame, we used filter() to get left leaning articles, and got the counts of bigrams 

appearing more than 200 times. Using graph_from_data_frame() and ggraph(), we were able to visualise 

the bigrams. Similarly, we did the same for bigrams appearing right leaning articles, and for bigrams 

appearing the most in the months of August and September 2019. 

 

During exploratory data analysis, we found two date ranges where the total number of articles, regardless 

of political lean peaked, and chose to analyse these articles further. These date ranges were 15th to 17th 

October, and 5th to 7th November. For these dates, we analysed bigrams appearing in article headlines. The 

bigrams were obtained and visualised in a similar fashion to what was performed for the article text analysis.  

 

3.4 Article Reading Level Analysis 

One interesting, and politically relevant, facet of the problem to explore is the “sophistication” of each news 

organization’s writing style. To do so we applied the Flesch-Kincaid readability scale to the collected news 

article data. Developed for the Navy by Flesch Kincaid in 1975 [2], it provides a simple formulaic 

approximation of the years of schooling needed to understand a given text based on the number of words 

per sentence and number of syllables.  

 

3.5 Sentiments and Word Clouds 

To extract the subjective information from the text we classified the polarity in the words that make up the 

text. We used the bing lexicon to predict the sentiment score(positive – negative) and analyze if the overall 

underlying sentiment is positive or negative. To perform the analysis, we tokenized data to bigrams using 

unnest_tokens() function, specifying token value as ngram with n=2. With antijoin of negation words with 

token in column 1 we eliminated the probability of wrong categorization by taking the reference into 

consideration. To examine how these sentiments changed over time we plotted a box plot over the period 

of time to validate the uniformity/ variation in the trend of the writing style grouping by both news sources 

and political lean. To further evaluate the strength of each sentiment for a word we performed a similar 

analysis on our tokenized data using the afinn lexicon which assigned scores for positive and negative 

sentiments followed by likewise plotting a box plot using ggplot() function. 



We used wordcloud() function to finally present the keywords standing out in the text through a visual 

engagement. These words were expected to depict the change/uniformity in the observation observed in the 

barplots for bing and afinn lexicons. To create the word cloud we loaded the required packages including 

the ones for mining the text, stemming it, generating the word cloud and for selecting the colors from the 

color palettes. The Corpus() function was then used to load the data. Once the data was loaded it was then 

transformed to a tidy format which involved removing stop words, pronunciation, special characters and 

also popular names. With the help of TermDocumentMatrix() function we obtain a table containing the 

frequency of word which was used as an input to the wordcloud() function for generating the word cloud.  

 

4. Article Classifier 

 

4.1 Support Vector Machine Classifier 

One of our objectives was to see how accurately would a machine learning algorithm differentiate a right 

leaning article from a left leaning one. To achieve this goal, we fit a Support Vector Machine (SVM) 

classification model to our data excluding centre leaning articles.  

 

We first created a dataframe of individual words from the article text using unnest_tokens() function and 

filtered out the stop words and all words that appeared less than 10 times in all the articles using count() 

and filter() respectively, and named it tiar. Similarly, we got another data frame with an additional column 

stating which article that word belonged to, and the lean of the article. We inner joined tiar with this data 

frame, and then cast it into a document-term matrix using cast_dtm() and named it tilear. We then coerced 

tilear into a matrix and created a partition on it to form a training and a test set with 0.8 and 0.2 proportions 

of the data respectively. The train and test sets were then coerced into data frames using as.data.frame(). 

We then removed the lean column on both data frames to pass them into the classifier. The training set was 

then passed to the train() function of the caret package in R using the method svmLinearWeights2 to train 

the classifier. Once the training was done, we predicted the accuracy on the test set and obtained the 

confusion matrix along with diagnostics such as specificity and sensitivity (here, left is the positive class 

and gets classified as 0). 

 

4.2 Fasttext Classifier 

Fasttext is a classifier system developed by Facebook which creates word embeddings in order to capture 

the meaning of words. It does so by going through “ngrams” of words, meaning it learns the meaning of 

words by learning the meaning of subsections of words. This helps the algorithm to learn prefixes and 

suffixes. 

 

In order to use fasttext, the data was reorganized into the format that the fasttext command line tool accepts, 

where each line starts with __label__<label of text> followed by the text itself. The fasttext command line 

tool was then run using k-fold cross validation to find the best hyperparameters. The tool was then used to 

make predictions on the test set, and the validity of these predictions were analyzed in python, including 

generating an ROC curve. 

 

 

 



4.3 RNN Classifier 

Another classification method that was used was a RNN. RNNs generally are often used in natural language 

processing applications, as they are able to use the sequence of information as a factor in the classification 

process very effectively. The RNN we trained was implemented in Keras. 

 

Before the text was used in the model, it was processed to be converted to pretrained embeddings on the 

entire English language from Fasttext. Only the first 200 words of each article were used in order to decrease 

training time. Once this data was generated, it was first fed into a Conv1D unit with MaxPooling to decrease 

data dimensionality and learn general patterns. This was then fed to a 128 size LSTM unit, then to a 

traditional feed forward neural network where the predicted label was output. See Appendix B, Section 1 

for code samples. 

 

Results 
1. The Most Common Terms: We found that the word ‘Trump’ was by far the most used word in 

headlines for both right and left wing news outlets every month. This is unsurprising, as Donald 

Trump is the President of the United States, and a controversial one at that. The word 

‘impeachment’ was not one of the top 10 words in August, but picked up in usage every month, 

peaking in November. In addition, ‘impeachment’ was used much more in headlines by left wing 

news outlets, indicating that they are reporting more on impeachment than right wing news outlets. 

The right used the word ‘biden’ much more during every month analyzed. This is likely partially 

due to the fact that they are reporting on Hunter Biden much more than the left, and due to the fact 

that he is currently the most likely candidate to challenge Donald Trump in the 2020 election. 

2. Presidential Candidate Popularity Analysis: We found out that Trump, Biden, Warren, Sanders and 

Harris got the most coverage from news sites (in that order), apart from 3 instances where BBC 

covered Andrew Yang more than they did Kamala Harris, Reuters covered Pete Buttigieg more 

than they did Kamala Harris and Five Thirty Eight covered Joe Biden and Elizabeth Warren more 

than they did Donald Trump. Another interesting thing we found out was that Tom Steyer received 

least coverage from all news sites except for FiveThirtyEight and Mother Jones where Andrew 

Yang received the least coverage.  

3. Bigram and Word Association Analysis: We found that left leaning articles had bigrams like ‘gun 

violence’, ‘mass shootings’, ‘El Paso’, and ‘climate change’ apart from common bigrams like 

‘Donald Trump’ and ‘Volodymyr Zelensky’ (the President of Ukraine). What’s interesting is that 

right leaning articles didn’t talk about mass shootings and gun violence much, while they mention 

‘illegal aliens’ more often. ‘Hillary Clinton’ and ‘Ocasio Cortez’ appeared frequently in right 

leaning articles. In the month-wise bigram analysis, terms like ‘trade war’, ‘Hong Kong’, and ‘El 

Paso’ were most common for August due to the ongoing trade war between the US and China, 2019 

Hong Kong Protests, and El Paso shooting respectively. Impeachment wasn’t used frequently 

enough to be visible on the visualisation. However, terms like ‘impeachment inquiry’, ‘Volodymyr 

Zelensky’, and ‘whistleblower complaint’ were used often in articles from September as the 

Trump-Ukraine Scandal reached public attention during the month. was. During the analysis of 

article headlines for 15th to 17th October, bigrams related to the Ukraine scandal remained 

frequently used, along with ‘democratic debates’ and Democrat presidential candidates such as 

‘Kamala Harris’, ‘Elizabeth Warren’,  and ‘Joe Biden’ due to a debate on 15th October. Similar to 



October, the most common terms between 5th and 7th November were related to the scandal, and 

included the bigrams ‘Gordon Sondland’ (the US ambassador to the EU), ‘quid pro’, and ‘pro quo’ 

(which together form the term quid pro quo). Another point of note is ‘impeachment trial’ was also 

used, as opposed to just ‘impeachment inquiry’.  

4. Article Reading Level Analysis: This showed some expected relationships, such as BBC (by 

design) being fairly easy reading while others like Vox are more are more difficult (perhaps due to 

favoring long-form articles more often).  

5. Sentiments and Word Clouds: The left leaning political sites use moderate adjectives and adverbs 

like ‘important’, ‘wise’, and ‘work’, while the right uses strong words to propel their writing 

forward, with words like ‘paradoxically’, ‘molestation’, and ‘obliterate’ among the popular ones. 

CNN, FiveThirtyEight, and Vox (all left leaning) are the only news sources displaying an overall 

positive sentiment. Meanwhile, Fox displays the most negative sentiment value amongst the 

remaining five. On grouping the news sources by political lean, we observed that the left displays 

an overall positive sentiment, the right has an overall negative sentiment, with center lean falling 

somewhere in the middle. On further analysing it was observed that right leaning news sources 

integrate words having strong negative sentiments, while the left displayed an overall positive 

sentiment the positive words did not have a very high sentiment score attached to it and were mostly 

only moderately positive. From the analysis we could hence conclude that left lean sources write 

with neutrality keeping their biases aside.  

6. Article Classifiers: 

6.1. Fasttext Classifier: The fasttext model achieved 74% accuracy on the test set, including all 

three classes of left, right, and centre. The model performed best on the class “centre”, with 

an F1 Score of 0.88, and worse on the class “right”, with an F1 Score of 0.6. Further, as 

can be seen in Figure 1, the AUC score on centre leaning articles was much better than on 

those of both left and right leaning articles. 

6.2. SVM Classifier: The results of the SVM classifier were very promising as we got a 

prediction accuracy of 92.72% on the test set. The sensitivity was 0.9286 and the specificity 

was 0.9254, i.e. the ratio of correctly predicted left articles to the total number of left 

articles (true positive rate) was 0.9286 and the ratio of correctly predicted right articles to 

the total number of right articles (true negative rate) was 0.9254. 

6.3. RNN Classifier: The results of the RNN were excellent, boasting headline accuracy of 

0.8771. The classifier performed very well on all classes, with 0.8899 accuracy on left, 

0.9149 accuracy on right, and 0.9494 accuracy on centre. Sensitivities and specificities for 

each class were above 0.8, except for centre’s sensitivity of 0.55. Further, as can be seen 

from Figure 2, the ROC curves were exceptional for each class, showing that the RNN 

model has great predictive power. 

 

Discussion 
Overall, our results show that there are massive differences in the way that right, left, and centre leaning 

organizations present the news. Through the use of exploratory data analysis, we identified how different 

organizations have clear differences in not only their writing styles, but in what they report on. It is clear 

that, for example, the right is avoiding the topic of impeachment to an extent. In addition, you are much 



more likely to find articles about gun violence on left leaning news sites, while you are more likely to find 

articles about illegal immigration on the right. 

 

In addition to the revelations of our data analysis, our models showed that it is entirely possible to 

automatically predict the political lean of an article given exclusively the article’s text. Both our SVM 

classifier and our RNN classifier were able to complete this task at a very high level. It could be argued that 

they performed above human level performance. 

 

Given more time, we would have added much more analysis to the project, as there are many interesting 

sub areas to look into. For example, it would be interesting to see how these websites reported differently 

before Trump became president, and during various other big political events, like the Mueller hearings. 

Further, analyzing on a per author basis could have shown that even within websites different authors have 

distinct writing styles. Finally, a stretch goal would be to collect white nationalist/extremist content, and 

analyze the way that it differs from non-extremist content. 

 

Statement of Contributions 
 

1. Devanshi Deswal: Comparison of adjectives and adverbs used by the Left and Right using word 

clouds, sentiment analysis of article text for each news site and political lean 

2. Samar Dikshit: Filtering and transforming the data collected to include articles related to US 

politics, bigram and word association analysis 

3. Connor Higgins: Data collection using web scraping, article reading level analysis using the Flesch-

Kincaid scale 

4. Kartheek Karnati: Presidential candidate popularity analysis, bigram and word association analysis, 

SVM article classifier 

5. Oliver Spohngellert: Data collection using web scraping, overall term usage analysis, Fasttext 

article classifier, RNN article classifier 

 

References 
[1] “Media Bias Ratings”. [Online]. Available: https://www.allsides.com/media-bias/media-bias-ratings 

[2] J. P. Kincaid, J. Fishburne, R. R. P., C. R. L., and B. S., “Derivation of New Readability Formulas 

(Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted 

Personnel,” Institute for Simulation and Training, Jan. 1975. 

[3] “sitemaps.org,” Home. [Online]. Available: https://www.sitemaps.org/ 

[4] “fasttext.cc”, Wiki word vectors. [Online]. Available: https://fasttext.cc/docs/en/pretrained-

vectors.html 

[5] “keras.io”, Pretrained word embeddings. [Online]. Available: 

https://keras.io/examples/pretrained_word_embeddings/ 

 

 

 

https://www.allsides.com/media-bias/media-bias-ratings
https://www.sitemaps.org/
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html


Appendix A 

Figure 1: ROC curve for Fasttext classifier 

 



 
 Figure 2: ROC curve for RNN classifier 

 

 
Figure 3: The number of articles published each day broken by political lean 

 



 
Figure 4: The most common terms 

 
Figure 5: The 5 most popular candidates 



 
Figure 6: The least popular candidates 

 

 
Figure 7: Most common bigrams from left leaning articles  



 
Figure 8: Most common bigrams from right leaning articles 

 
Figure 9: Most common bigrams in August 



 
Figure 10: Most common bigrams in September 

 
Figure 11: Most common bigrams from 15th to 17th October 



 
Figure 12: Article reading levels 

 
Figure 13: Word cloud for left leaning articles 



 
Figure 14: Word cloud for right leaning articles 

 

 
Figure 15: Individual sentiment analysis 



 
Figure 16: Overall sentiment analysis 

 

 

Appendix B 
Section 1: RNN Code 

BASE_DIR = '' 

GLOVE_DIR = os.path.join(BASE_DIR, 'glove.6B') 

TEXT_DATA_DIR = os.path.join(BASE_DIR, '20_newsgroup') 

MAX_SEQUENCE_LENGTH = 200 

MAX_NUM_WORDS = 20000 

EMBEDDING_DIM = 300 

VALIDATION_SPLIT = 0.2 

# first, build index mapping words in the embeddings set 

# to their embedding vector 

 

print('Indexing word vectors.') 

 



embeddings_index = {} 

with open('wiki.en.vec', 'r') as f: 

 for line in f: 

     word, coefs = line.split(maxsplit=1) 

     coefs = np.fromstring(coefs, 'f', sep=' ') 

     if len(coefs) < 300: 

      continue 

     embeddings_index[word] = coefs 

 

print('Found %s word vectors.' % len(embeddings_index)) 

# second, prepare text samples and their labels 

print('Processing text dataset') 

 

texts = []  # list of text samples 

labels_index = {'left': 0, 'right': 1, 'centre': 2}  # dictionary mapping 

label name to numeric id 

labels = []  # list of label ids 

train_split = pd.read_csv("train_split.csv") 

texts = train_split['article_text'] 

labels = train_split['political_lean'].map(labels_index) 

 

print('Found %s texts.' % len(texts)) 

 

# finally, vectorize the text samples into a 2D integer tensor 

tokenizer = Tokenizer(num_words=MAX_NUM_WORDS) 

tokenizer.fit_on_texts(texts) 

sequences = tokenizer.texts_to_sequences(texts) 

 

word_index = tokenizer.word_index 

print('Found %s unique tokens.' % len(word_index)) 

 

 

data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) 

 

labels = to_categorical(np.asarray(labels)) 

print('Shape of data tensor:', data.shape) 

print('Shape of label tensor:', labels.shape) 

 

# split the data into a training set and a validation set 

indices = np.arange(data.shape[0]) 

np.random.shuffle(indices) 

data = data[indices] 

labels = labels[indices] 



num_validation_samples = int(VALIDATION_SPLIT * data.shape[0]) 

 

x_train = data[:-num_validation_samples] 

y_train = labels[:-num_validation_samples] 

x_val = data[-num_validation_samples:] 

y_val = labels[-num_validation_samples:] 

 

 

print('Preparing embedding matrix.') 

 

# prepare embedding matrix 

num_words = min(MAX_NUM_WORDS, len(word_index) + 1) 

embedding_matrix = np.zeros((num_words, EMBEDDING_DIM)) 

for word, i in word_index.items(): 

 if i >= MAX_NUM_WORDS: 

     continue 

 embedding_vector = embeddings_index.get(word) 

 if embedding_vector is not None: 

     # words not found in embedding index will be all-zeros. 

     embedding_matrix[i] = embedding_vector 

 

# load pre-trained word embeddings into an Embedding layer 

# note that we set trainable = False so as to keep the embeddings fixed 

embedding_layer = Embedding(num_words, 

                         EMBEDDING_DIM, 

                        

 embeddings_initializer=Constant(embedding_matrix), 

                         input_length=MAX_SEQUENCE_LENGTH, 

                         trainable=False) 

 

 

sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32') 

embedded_sequences = embedding_layer(sequence_input) 

x = Conv1D(128, 2, activation='relu')(embedded_sequences) 

x = MaxPooling1D(2)(x) 

x = LSTM(128, recurrent_dropout=0.2)(embedded_sequences) 

 

 

x = Dense(128, activation='relu')(x) 

x = Dropout(0.2)(x) 

preds = Dense(len(labels_index), activation='softmax')(x) 

 

model = Model(sequence_input, preds) 



model.compile(loss='categorical_crossentropy', 

           optimizer='rmsprop', 

           metrics=['acc']) 

 

model.fit(data, labels, 

       batch_size=128, 

       epochs=50) 

 

 

Section 2: Code for the least popular candidate running for Presidency in the next election 

 

counts <- tidy_articles %>% 

  semi_join(names)%>% 

  count(news_site, word, sort = TRUE)  

 

least_counts <- tidy_articles %>% 

  semi_join(names)%>% 

  count(news_site, word, sort = TRUE) %>% 

  group_by(news_site)%>% 

  summarise(least_popular_candidate = min(n))%>% 

  ungroup() 

 

least_popular_candidates <- 

counts%>%semi_join(least_counts,by=c("n"="least_popular_candidate"))%>% 

  rename(number_of_mentions = n) 

least_popular_candidates 

 

Here, ‘least_popular_candidates’ tibble/data frame stores the last name of the least popular candidate 

running for Presidency in the next election in each news site along with the site’s political lean and count 

of the last name. 

 

 

 

 


